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ADVANCED CASCADED SCHEDULING FOR HIGHLY AUTONOMOUS 

PRODUCTION CELLS WITH MATERIAL FLOW AND TOOL LIFETIME 

CONSIDERATION USING AGVS 

In today’s manufacturing systems, especially in Industry 4.0, highly autonomous production cells play  

an important role. To reach this goal of autonomy, different technologies like industrial robots, machine tools, and 

automated guided vehicles (AGV) are deployed simultaneously which creates numerous challenges on various 

automation levels. One of those challenges regards the scheduling of all applied resources and their corresponding 

tasks. Combining data from a real production environment and Constraint Programming (CP-SAT), we provide  

a cascaded scheduling approach that plans production orders for machine tools to minimize makespan and tool 

changeover time while enabling the corresponding robot for robot-collaborated processes. Simultaneously, AGVs 

provide all production cells with the necessary material and tools. Hereby, magazine capacity for raw material as 

well as finished parts and tool service life are taken into account. 

1. INTRODUCTION  

The continuous and immediate development in science and industry drives companies 

and their manufacturing systems to be more autonomous to improve their efficiency, quality, 

flexibility, and reduce costs. Therefore, they are relying on different technologies such as 

robots for automated material handling and manufacturing tasks with light force, as well as 

AGVs for surrounding logistic processes, e.g., for materials or tools. Machine tools working 

in parallel with robots are called robotic cells [1] and are a core element of today’s smart 

manufacturing systems [2]. There are multiple setups in which machine tools and robots can 

operate, i.e., one robot handles material for multiple machine tools [3] or each machine tool 

works in parallel with one robot. Additionally, each robot in a production cell is used for 

material handling, like loading or unloading the machine which induces long idle times 

between the two tasks. Complementary, AGVs are used to supply robotic cells with raw 

materials and tools, while also carting off finished parts. To efficiently manage and utilize 

these different technologies, over the last two decades, researchers developed varying 
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scheduling approaches. This optimization problem is broadly known as the Job Shop Problem 

(JSP) and occurs when several jobs and tasks need to be planned on multiple machines or resources 

[4]. Generally speaking, companies that try to achieve a higher degree of autonomy, will find 

themselves in a situation, where comprehensive scheduling algorithms are needed to efficiently 

deploy cost-intensive machine tools, robots, or AGVs, see also [5]. All these technologies together 

with scheduling algorithms are fundamental to realize a flexible manufacturing system [6]. 

During the last 15 years, many attempts and approaches have been made to solve the JSP 

using different algorithms and metaheuristics, see Table 1. 

Table 1. Job shop scheduling approaches over the last 15 years 

Vallada and Ruiz [7] proposed a genetic algorithm that uses fast local search and enhanced 

local search crossover operators to optimize the makespan of an unrelated parallel machine 

scheduling problem. Here, the total amount of jobs have to be scheduled on a given amount  

of machines. In the end, the authors compared their proposed algorithm to existing methods, with 

their genetic algorithm showing the best results. 

An alternative genetic algorithm for scheduling and sequencing robotic cells was presented 

by Abdulkader et al. [8]. The setup for their scheduling problem was a four-machine blocking 

robotic cell where the robot supplies parts to all machines. The author’s goal was to optimize the 



 

E. Miller et al./Journal of Machine Engineering, 2023, Vol. 23, No. 3, 69–85 71 

 

job sequencing while minimizing the robot cycle time. The proposed algorithm was tested against 

a full enumeration solution, and it was quickly evident that the genetic algorithm outperforms the 

enumeration solution when it comes to higher number of production jobs. Building on genetic 

algorithms, Lacomme et al. [9] relied on memetic algorithms to solve their scheduling problem. 

Memetic algorithms are an extension of the previously mentioned genetic algorithms [10] and are 

in this case comprised of a powerful local search procedure [9]. The purpose of the algorithm was 

to plan multiple machines and AGVs to minimize the makespan and find the best sequences for 

jobs and transport operations. 

Deviating from genetic algorithms into a two-machine robotic cell scheduling problem, 

Zarandi et al. [11] applied the Gilmore and Gomory algorithm to solve this problem. In this setup, 

one robot supplies two machines with material while getting material from the input station and 

storing parts in the output station. The goal of the algorithm is to minimize the cycle time by 

determining the number of robot moves and the sequence of parts. The same arrangement of two 

machines and one robot was investigated by Gundogdu and Gultekin [12]. The robot handles 

material for both machines, again using two buffers for input and output material. Besides these 

buffers, there is an additional buffer that moves with the robot and can also hold a set number  

of parts. All parts produced on the machines are identical. The authors differentiated between 

different capacity buffers to determine the cyclic schedule in which the robot can move to 

maximize the throughput time. Depending on the buffer capacity, the proposed iterative algorithm 

could find solutions, more so if the capacity was larger. 

It is also possible to combine algorithms, as seen in [13]. The scheduling approach is a hybrid 

matheuristic between a neighborhood-based genetic algorithm and a set of cluster agents that uses 

a tabu search technique. The hybrid algorithm is used to plan a set amount of jobs on multiple 

machines. Said jobs are hereby conveyed between machines by transport robots, similar to AGVs. 

The authors compared their algorithm against other genetic algorithms and tabu search procedures. 

The results show that the proposed algorithm outperforms existing solutions while creating new 

optimal solutions. 

A comparable scheduling setup was explored by Zabihzadeh and Rezaeian [14]. Robots are 

used to transport and load parts to a set amount of machines. The goal is to find the optimal 

sequence of processing parts and robot movements. This enables minimizing the makespan and 

finding the optimal number of robots needed. The chosen algorithm is a mixed integer linear 

programming model which is widely used in the context of the JSP [3]. The authors strengthen 

the mixed integer programming model by adding constraints that take advantage of specific 

relations regarding their scheduling problem. They investigate dynamic job-shop scheduling  

of robotic cells where jobs enter with unanticipated arriving rates. With a robot handling 

transportation, the goal is to find the optimal solution for job orders. 

A similar approach was taken by Ghadiri et al. [15] and Li et al. [16], where a flexible robotic 

cell with multiple machines and one robot was studied. Ghadiri et al. [15] try to determine the 

order of activities the robot should partake in. Establishing a universal scheduling model to 

minimize the cycle time, the results show that the modified version is ultimately more efficient 

than the model of literature. Alternatively, Li et al. [16] go one step further by simultaneously 

calculating the assignment on each machine, the transport order as well as the operations 

assignment for the robot. The computational results of the teaching learning based optimization 

algorithm could effectively minimize the makespan. 
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In robotic cells, where one robot supplies one or multiple machines with material or parts, 

there is always the risk of idle time for the robot, especially in one-to-one setups. Therefore, it 

would be possible to incorporate the robot to perform collaborative tasks in addition to 

transportation. Zhou and Li [17] explored the possibility of so-called robot-collaborated processes 

(RCP) within a robotic cell, where one robot supplied five machines with material. To reduce 

downtime between material handling jobs, the robot performs measurements or quality control 

tasks. As in previous works, the goal is to optimize the sequences of the robot and the 

manufacturing cycle time. This is achieved through a tabu circulatory time point searching 

algorithm. Depending on the production setup, if a robot has to supply more than one machine, 

this can lead to a bottleneck where the robot is too slow, and the total makespan increases. In a 

one-to-one production cell, this is definitely not the case, on the contrary, here lies the opportunity 

to reduce the makespan by incorporating the robot. 

In a recent study by Reddy et al. [18], an approach to create a scheduling method that 

combines machines, AGVs, and tool transporter was demonstrated. To further enhance flexible 

manufacturing systems, the authors looked into a circulatory setup of four CNC machines. A total 

of two AGVs and one tool transporter supply all machines with tools, with all tools being stored 

in a central tool magazine. With their scheduling approach, they came to the conclusion that tool 

switching and tool waiting time pose a considerable influence on the makespan. Reddy et al. [18] 

also conclude that it would be unfeasible to leave out tool switching and job/part transfer times. 

Based on this, the existing research by the Authors [19] will be extended with the following 

additions to create a cascaded scheduling approach for robotic cells, to schedule production jobs 

on multiple machines with AGV supply: 

1. Transport orders for raw material and finished parts. 

2. Transport orders for tool switching. 

3. Warning for tool lifetime transgression. 

These additions further enhance the provided scheduling approach which leads to  

a closer representation of a real production environment. Furthermore, it provides a novel 

method to make robotic cells more autonomous by integrating AGVs for material and tool 

allocation tasks. Additionally, idle time of the material management robots is reduced by 

incorporating robot-collaborated processes to reduce makespan. This results in a cascaded 

approach which schedules production orders, contemplating necessary material stocks and 

tool changes and tool lifetime while also outsourcing tasks from machine to its corresponding 

robot. 

 The following work is structured as follows: Section 2 emphasizes the importance of 

material flow, tool changeover and tool lifetime consideration. In Section 3 we provide insight 

into problems that occur when jobs or task are being scheduled. Building on this, the derived 

constraints and the scheduling algorithm are presented in Section 4.1. At last, Section 5 

displays the results of the proposed scheduling approach. 

2. ADDITION OF MATERIAL FLOW AND TOOL LIFETIME 

When looking at past literature, Table 1 shows that the combination of robotic cells, 

AGVs, and robot-collaborated processes has not been explored much. Most authors focus on 
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the material handling part between machines and robots. The external processes on how to 

get material or parts to the workstations in the context of JSP are as important. As mentioned 

by Ferenczi et al. [20], the combination of scheduling and material handling is one of the 

biggest challenges that a production system can face. Furthermore, the authors add that the 

transportation of materials from one production element to another is elemental for 

modernized manufacturing systems. Optimizing the flow of materials helps reduce production 

time, minimize work-in-progress inventory, and avoid bottlenecks that can slow down 

production and cause idle time. By planning and monitoring the material flow, it is possible 

to ensure the efficient use of materials. To realize this, AGVs have found an extensive 

utilization in flexible and autonomous production systems [21]. 

Furthermore, the provision of tools for machining tools is also a vital part of flexible 

manufacturing systems, as these can also be supplied with the help of AGVs. To enable the 

possibility of efficient tool changeover, there must be a tool lifetime consideration. As tools 

degrade when cutting metal or other rigid materials, eventually those tools must be swapped 

to ensure the high quality of parts and avoid machine downtime. Especially for milling 

processes, which are a big part of the underlying manufacturing tasks, surface finishes are key 

factors, which can only be obtained with high-performing tools. Worn-out tools also produce 

poor-quality products which can lead to customer complaints or product recalls. Moreover, 

in the field of metal cutting, where manufactured parts are big in size and need longer hours  

of manufacturing, parts cannot be discarded. This would not only result in wasted materials 

but also wasted time, money, and energy. If the part can still be saved, it would only be 

possible through touch-ups or reworks which also cost time and money. 

3. PROBLEM DEFINITION 

The following section provides insight into problems that arise using the previously 

mentioned technologies and how such a manufacturing setup can look like. This paper focuses 

on four main problems that emerge in robotic cells and how they can be overcome using 

scheduling algorithms. Therefore, the chosen scheduling approach will be explained. 

As mentioned in Section 1, there are multiple ways in which machine tools and robots 

can collaborate. In this contribution, the underlying setup is a machine park where each 

machine tool is assigned with one robot, as seen in Fig1. For this use case, there are a total of 

three machine tools, three robots and two AGVs, one for materials and one for tools. Each 

robotic cell has a shelf for raw material and finished parts which are supplied or transported 

away by the material AGV. On the other hand, all machine tools have their own tool 

magazine, where the tool AGV can deliver all needed tools for planned jobs. 

When looking at this kind of manufacturing setup, there are four main problems that 

have to be addressed: 

Problem 1: The first problem regards tool availability. Some tools are only available 

once and have to be distributed between machines, depending  on  which production order is  

assigned to what machine. Tools have to be scheduled efficiently to reduce changeover time 

and impede idle time. 
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Problem 2: Problem number two addresses tool lifetime and coincides with problem 

one. Tools are only capable of processing a limited amount of parts, before the tools have to 

be replaced. Therefore, a warning or trigger before a tool reaches its final lifetime is needed. 

Problem 3: Moving on from tools to materials, problem three is the supply of raw 

material and work pieces, as well as carting away finished parts. Again, to impede idle time 

of all machines, there has to be sufficient raw material and enough space for finished parts to 

not interrupt the manufacturing process of the machine tool. 

Problem 4: The last problem is related to the previously mentioned RCP. To avoid idle 

time of the robot, after handling materials, they have to take over tasks of the machine tool. 

To enable RCP, tasks between robot and machine tool have to be scheduled as well. 

 

Fig. 1. Manufacturing setup 

Addressing distribution, production and transportation planning simultaneously 

enhances the efficiency of all these processes and operations significantly. It results in a very 

complex system with a multitude of activities within the production planning and shop floor 

management. These vast systems are subject to a large quantity of constraints, restrictions, 

and problems which makes it easy to overengineer or over constrain them. Therefore, it is 

important to concentrate on problems that are solvable and are important for the actual 

production environment which were selected in this case study. The same goes for the 

selection of optimization algorithms. As mentioned in Section 1, there are several 

optimization algorithms, like genetic algorithms or mixed integer programming models. 

Considering the existing problems of job/task allocation and constraints like tool availability 

or manufacturing task order, an established method stood out. A combination of constraint 

programming (CP) and boolean satisfiability (SAT), combined CP-SAT, was chosen for  

the presented scheduling problem. Constraint programming has already been proven to work 
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for different scheduling problems [22–25]. Here, CP finds a variety of applications and is 

mostly used in combination with other techniques, such as mixed integer linear programming 

to solve variations of the JSP. In order to solve combinatorial optimization problems, 

constraint programming enables to set different constraints that help narrow down the 

possible solution [26]. 

The issue when looking at problems 1–4 is to plan all resources accordingly, to not 

create deadlock situations. A deadlock creates a scenario where two or more parts are in 

circular wait, which means parts are held back by other processes in the chain [27]. Coffman 

et al. [28] presented four conditions that need to arise simultaneously for a deadlock to arise: 

1. Mutual exclusion: processes claim exclusive control over the resources they require. 

2. Hold and wait: allocation of additional resources to already holding processes. 

3. No pre-emption: resources can only be removed by using them for completion. 

4. Circular wait: each process in the chain requires one or more resources that are 

requested by the following process. 

In order to avoid deadlocks, it is sufficient to ensure that at least one of the four 

conditions is not met. As elaborated by Banaszak and Krogh [29], in manufacturing systems 

conditions 1–3 are always met and deadlocks are only created by circular wait and therefore 

needs to be avoided. All AGV transport order are calculated with enough buffer to ensure that 

the circular wait condition does not arise. 

4. CONSTRAINT PROGRAMMING AND SCHEDULING ALGORITHM 

The following section dives deeper into the above-mentioned restrictions and constraints 

and how they help to delimit the manufacturing setup and its scheduling problem. These 

constraints will be split into two sections. After the constraints have been set, the next 

paragraph will describe the algorithm, especially on how to minimize the target variables’ 

makespan and tool changeover time. 

4.1. CONSTRAINTS 

The first set of constraints was developed for production order planning on multiple 

machines. Here, a set number of production jobs will be planned onto all available machines 

to minimize makespan and tool changeover time. The second section displays constraints that 

are necessary to plan the tasks between every robot and machine combination, to again, 

minimize the makespan. All constraints are derived from a real engineering and production 

environment and facilitate the importance of this topic. 

The following assumptions have been made for all production cells to schedule 

production jobs respecting material and tool availability: 

(1) All machines Mi (i = 1, 2, ..., M) can manufacture all parts Jn (n = 1, 2, ..., N), 

(2) Every production order can be assigned to any machine, 

(3) Each machine can manufacture only one part at a time, 

(4) All production intervals on one machine cannot overlap, 
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(5) All parts in a lot are identical and are processed consecutively, 

(6) Specific tools Ti (i = 1, 2, ..., T) are only available once, 

(7) These specific tools have to be shared between all machines, 

(8) All tools are supplied via tool AGV, 

(9) Tool lifetime has to be considered, 

(10) Raw material RMi (i = 1, 2, ..., RM) is supplied by material AGV, 

(11) Final goods FGi (i = 1, 2, ..., FG) are carted away by material AGV. 

With M consisting of all machines and N being the total amount of parts to be produced.  

The variable T contains all tools that are needed for the selected jobs. Lastly, the 

variables RM and FG describe raw material and final goods respectively. The provided data 

contains all necessary information beginning from process ID, over tasks for each job and 

their duration, to every single tool, their cutting time, and lifetime. With the number of 

machines and the data for all jobs, the algorithm schedules all jobs while minimizing the 

makespan. After scheduling all jobs, the next step is to plan all tasks inside each job. To allow 

for robot-collaborated processes, the algorithm decides if there are tasks that the robot can 

undertake, to reduce cycle time. New assumptions had to be made to enable RCP: 

(1) The first and last task Pi (i = 1, 2, ..., P) are loading and unloading the machine, 

(2) The robot Ri (i = 1, 2, ..., R) can take over processes from the machine (RCP), 

(3) The duration of RCP cannot be longer than the main process of the machine M, 

(4) Technological sequences must be followed, 

with P consisting of all tasks inside a production order and R containing the total number 

or robots.  

Considering all constraints, the developed method optimizes for two objectives: 

makespan and tool change over time (see equations 1 and 2). 

 

𝑚𝑖𝑛𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  ∑ 𝐽𝑖
𝑛
𝑖=1  (1) 

 

with Ji being the processing times of each production order, n the total amount of 

production orders. This processing time can be shortened by allocation tasks from machine 

to robot. Similarly, equation 2 describes the tool change objective where TCi describes one 

tool changeover time and m represents the total amount of tool changeover that need to be 

carried out.  

𝑚𝑖𝑛𝑇𝑜𝑜𝑙_𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟 =  ∑ 𝑇𝐶𝑖
𝑚
𝑖=1  (2) 

Both objective functions are always calculated and considered simultaneously to 

achieve the shortest makespan with the least tool changeover possible. With all mentioned 

constraints taken into consideration, an algorithm based on CP-SAT was developed and will 

be explained further. 

4.2. ALGORITHM PRINCIPLE 

Based on CP-SAT and the derived constraints, an algorithm was created that solves all 

problems mentioned in Section 3, by considering all relations and restrictions mentioned in 

Section 4.1.  



 

E. Miller et al./Journal of Machine Engineering, 2023, Vol. 23, No. 3, 69–85 77 

 

Fig. 2. Flow Diagram of the job allocation algorithm and tool change penalty 

Depending on the complexity of the constraints, it is possible to use existing constraints 

like “AddNoOverlapp” [30] which coincides with the fourth constraint of job scheduling, that 

the job intervals cannot intersect. Constraint programming in general has the advantage that 

it already provides a lot of constraints that can just be applied to the problems. This makes it 

easier to adjust to new problems and new scenarios. Nonetheless, these instruments are not 

capable of solving all constraints. More complex problems like the scheduling depending on 

tools and their availability have to be programmed themselves. For this case, a tool change 

penalty was introduced. The algorithm first lays out every job on all machines available, scans 

for all possible job sequences on each machine, and then compares the tools of all job 

combinations. If two jobs have different tools, the algorithm impedes a tool change penalty 

and writes it down into the tool change variable. Accordingly, the algorithm learns which job 

sequences provide the shortest manufacturing time. The flow chart (Fig. 2) provides insight 

into the structure of the main part of the algorithm which allocates jobs to machines by 

considering tool change penalties. 
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The second target variable, besides the tool change penalty, is the makespan. While 

solving the optimization problem, the algorithm tries to minimize both variables while 

considering all constraints. In parallel, the algorithm monitors raw materials, finished goods, 

and tools available on each machine. Each machine is equipped with a separate magazine for 

raw materials and finished parts. The program oversees the material flow and creates transport 

orders for the material AGV depending on if the raw material magazine is running low or 

finished goods need to be carted away. Similarly, the tool AGV transports tools from one 

machine to another. In this case, tool lifetime is also considered and gives a warning for said 

tools that the lifetime is ending, and it needs to be changed soon. 

To follow up on the cascaded scheduling model, the algorithm has found a plan for all 

production jobs and is now able to schedule tasks inside of each job. First, the script looks for 

all tasks inside a job that can be done by the robot. After clarifying which tasks can be 

transferred to the robot, the program looks for the allocation of tasks with the smallest 

makespan and puts them into an efficient order while considering technological sequences. 

The scheduling results for all applications will be displayed in the following chapter. 

5. APPLICATION ON REAL LIFE DATA 

This section addresses the results of the provided scheduling approach using data from 

a real manufacturing setup that uses numerous robotic cells as mentioned in Section 3.  

The following Fig. 3 summarizes all data relations and all schedule interrelations. First, the 

scheduling results for the job allocation will be displayed to decide which job will be planned 

on which machine and when regarding the time. 

 

Fig. 3. Cascaded scheduling approach and data relations 



 

E. Miller et al./Journal of Machine Engineering, 2023, Vol. 23, No. 3, 69–85 79 

 

Afterwards, data on missing tools, raw material and finished goods is gathered to create 

transport orders to fill the transport schedule. These transport sequences include orders for 

raw material to specific machines or tool transports from one machine to another. 

Simultaneously, tool lifetime is monitored to devise warnings for impending tool failure. At 

last, the task scheduling between single robot and machine, which incorporate robot-

collaborated processes, will be shown. Tasks hereby include material handling, CNC tasks 

and robotic processing steps. 

5.1. JOB SCHEDULING ON MULTIPLE MACHINES 

The data basis for this scheduling method are production orders and their corresponding 

data. This includes the duration all tasks needed to finish a work piece, all tools needed with 

their specific cutting and lifetime and the total amount of parts to be manufactured in this lot. 

Furthermore, the magazine capacities for raw material and finished goods are considered.  

The following example, Fig. 4, shows 12 jobs scheduled on three machines and addresses 

Problem 1 mentioned in Section 3. 

 

Fig. 4. Job scheduling on three machines indicating different tool sets with unique colours 

Each block on every machine (y-axis) shows one production order which includes up to 

13 parts. Production orders can vary widely in manufacturing time (x-axis), depending on  

the work piece and their complementary numerical control (NC) program. Identical colours  

of jobs indicate that these jobs also use completely identical toolsets for their corresponding 

tasks, which usually indicates that the same part will be manufactured for different production 

order. Therefore, the algorithm tries to schedule these jobs onto the same machine to reduce 

tool changeover between machines. This allocation of jobs is heavily influenced by the 

number of jobs and their duration. Nonetheless, it is still possible for some individual tools to 

be shared between jobs which is not indicated here but will be considered for tool transport 

orders. The number of jobs and machines can be adjusted, but has a direct impact on 

computation time, since the number of possible solution changes. Depending on the amount 

of production orders to be scheduled and especially their length, heavily influences the 

outcome. The shortest production duration on all machines shown in Fig. 4 is nearly 7000 

minutes which results in approximately 117 hours. This is due to the fact, that the production 

data consists of orders with semi big lot sizes but long manufacturing processes.  
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Despite that, it is still possible to increase the number of jobs, as seen in Fig. 5, with  

a total number of 17 jobs which increases the total makespan on each machine to over 9000 

minutes, approximately 150 hours. The method stays the same, but with different jobs and 

especially more production orders, the algorithm takes longer to calculate, but still finds one 

or more possible solutions to minimize makespan and tool changeover time. The colours in 

this plot were changed to a single colour for each machine from colour matching different 

tool sets to simplify the following addition of AGV transport orders. One more thing to note 

is the slight delay on every machine before the first job, also seen in Fig. 4. This is due to raw 

material supply from the material AGV. This will be further explained in the next paragraph 

explaining transport orders. 

 

Fig. 5. 17 jobs scheduled on three machines 

5.2. AGV TRANSPORT ORDERS AND TOOL LIFETIME 

In this section, the schedule further expands with the addition of transport orders and 

tool lifetime to address Problems 2 and 3. Material availability is calculated via magazine 

capacity and order quantity. The algorithm tracks both values and generates transport orders 

before the machine reaches an impasse and must stop production. The calculation is therefore 

based on a predictive logic where the material AGV pre-emptively supplies each machine to 

not run out of material while still considering the other transport orders. The same applies for 

finished work pieces. Finished goods are not as critical as raw material since the machine can 

still manufacture. Nonetheless, the algorithm avoids overfilling the magazine and creates 

transport orders for the AGV to cart away finished work pieces. As mentioned in the previous 

section, before each machine can start manufacturing, the material AGV provides all 

machines with raw goods consecutively which results in a small delay before the first job on 

every machine. All transport orders can be seen in Fig. 6, displayed in the row of “Material 

AGV”. Each small column in this section correlates to one transport order for the AGV. This 

can either mean raw material is being brought to the machine, or finished goods are carted 

away from the robotic cell. The colours of the material AGV correspond to the colour of the 

machine that is supplied in that moment. Since there is only one AGV for material handling, 

there can’t be any transport orders that overlap. The time for every transport order is heavily 

buffered to enable to AGV to fulfil all the necessary tasks in time. 
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For the tool transport orders, the windows of transport are split into two colours. Both 

colours match machines and indicate where the tool AGV takes tools out of a machine (left 

colour) and then moves them to the target machine (right colour). Once all tools necessary for 

the current production job are freed, they are then moved to the next machine. The number of 

shipped tools depends on the job and on the capacity of the tool AGV. Based on the machine 

tools used in this manufacturing environment, it is possible to change tools in the tool 

magazine even during production, which makes tool interchange even more flexible. 

 

Fig. 6. Job scheduling with the addition of transport orders for materials and tools 

The last addition of tool lifetime warnings can be seen in Fig. 7. The plot corresponds 

to the jobs that are planned and displayed in Fig. 4. The x-axis represents the manufacturing 

time or rather the makespan of the production orders. The y-axis on the other hand shows the 

three machines used in this kind of setup. Each data point in Fig. 7 belongs to a job and shows 

that during production one or more tools for this process will reach the end of their lifetime. 

Based on this data set, it means that there must be changeover of tools for every job, to ensure 

steady quality of parts. 

 
Fig. 7. Tool lifetime consideration and changeover time 

5.3. TASK SCHEDULING BETWEEN ROBOT AND MACHINE 

The last step of the proposed cascaded scheduling method is the task allocation between 

robot and machine of every robotic cell. Specific manufacturing steps, that would usually be 

done by the machine, can now be handled by the robot. These tasks could include processing 

steps like deburring, washing, or measuring. The idea is not to just simply transfer all possible 
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tasks from machine to robot but consider which allocation of tasks results in the shortest 

makespan. The proposed algorithm looks for possible solutions and decides which tasks fit 

what resource. Generally speaking, the robot takes over tasks of the machine for the 

previously manufactured part, while the machine produces the current part, to finish the last 

steps of the preceding part. The duration of the RCP has to be shorter than the main processing 

time of the machine, in order to avoid idle time of the machine tool. 

 

Fig. 8. Provided schedule of task allocation between robot and machine tool (RCP) 

Figure 8 shows the created schedule for a production order on the first machine. The red 

bar for Machine 1 contains all manufacturing tasks that could or should not be transferred to 

the robot and results in the main processing portion of the work piece. During this step, the 

robot avoids idle time by executing robot-collaborated processes. Additionally, material 

handling tasks are still present in the form of loading (Task 0) and unloading of the finished 

work piece (Task 6). This shows that the robot is capable of taking over tasks while 

considering the constraints set in Section 4.1 like taking into account the manufacturing time 

and RCP time to avoid idle time of both robot and machine. 

Summarizing, the cascaded approach combines the scheduling for three main aspects: 

Production orders on the planning level, AGV transport orders for materials and tools on the 

shop floor and lastly task allocation between robot and machine. The algorithm provides  

a basis that can help make manufacturing environments, especially robotic cells in 

combination with AGVs, fully autonomous. With the possibility to add more constraint and 

to challenge new problems it has the flexibility to address new scenarios and create new 

outcomes. By including real production variables like inventory or tool life time it can help 

improve robotic cells by improving work piece quality and saving costs.   

6. CONCLUSION AND FURTHER RESEARCH 

In this paper we provide a cascaded scheduling approach that incorporates technologies 

like machine tools, robots and AGVs, where robots and AGVs act as supplier for material and 

tools. Nevertheless, robots are not only used for material handling but also for so called robot-

collaborated processes, which are also present in the scheduling process. In contrast to 
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previous works on the topic of dynamic scheduling for robotic cells which rely on genetic 

algorithms, mixed integer linear programming, or tabu circulatory programming, the 

proposed scheduling method uses a combination of constraint programming and boolean 

satisfiability (CP-SAT). With the addition of material and tool flow, as well as the 

consideration of tool lifetime, different problems in a robotic cell arise. The unavailability or 

uniqueness of tools requires the relocation of said tools between machines, while still 

regarding their service life to provide an interference-free manufacturing process. Besides 

tool management, to ensure a stable process, there needs to be a constant flow of materials, 

which can also be enabled using AGVs. To tackle these problems, different constraints 

derived from an actual manufacturing environment have been set. These constraints are split 

into job scheduling on multiple machines and task allocation between single robot and 

machine. The proposed algorithm has two distinct target variables: Minimization of makespan 

and tool changeover time. The latter is solved be creating a tool change penalty. The algorithm 

impedes penalty for every tool changeover that happens between two jobs and saves the 

penalty into a variable. Ultimately, the proposed method creates a schedule for a set amount 

of production orders and minimizes makespan while considering tool status. Furthermore, it 

monitors material magazines for raw material and finished goods to create transport orders 

for the material AGV to supply or cart away parts. At last, each robot is enabled for robot-

collaborated processes, where another makespan optimization takes place. This is achieved 

by relocating tasks from machine tool to robot. All of this is presented using real-life 

production data which speaks for this method. Values, constraints, and problems are directly 

derived from experts in the field of robotic cells and manufacturing systems. The proposed 

method is tailored to the needs of an autonomous manufacturing environment. Furthermore, 

more constraints or even resources like machines, robots or AGVs can be added at any time 

to adjust for a changing layout. Nonetheless, there are also negative points like computation 

time and no real time monitoring. The computation time rises fast with higher amounts  

of production order because of more potential tool changeovers. This is not a big of a problem 

in this kind of manufacturing setup, because of long manufacturing durations per job, but 

could be different for shorter manufacturing times with more orders. Real life monitoring as 

of now is not possible since the scheduling approach only creates a plan. It cannot adjust for 

any unexpected situations that would change the workflow. 

Further research will include the transition to a real-life setup that demonstrates the 

manufacturing setup where the proposed algorithm can be tested and validated. The setup 

includes multiple robots and an AGV to indicate material and tool flow. This proposal 

requires further understanding of machine controls and how to apply the scheduling algorithm 

to the different resources to supply machines and robots with their respective codes. Another 

addition should be consideration of real time monitoring, where the algorithm recalculates the 

schedule depending on external factors. 
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